67th Annual McGill Refresher Course
Hands On: The Tailored Neurological Exam
Disclosures

- None
Objectives

- Review the neurological exam
- Demonstrate technique where applicable
 - How to do it
- What is ‘evidenced based’?
 - Should we really be doing this?
- Understand organization and ways to ‘enhance’ organization (‘focus’ the exam)
 - How to do what we should be doing, effectively
<table>
<thead>
<tr>
<th></th>
<th>McGill neurologists</th>
<th>Canadian neurologists</th>
<th>McGill medical students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual fields*</td>
<td>Visual fields*</td>
<td>Visual fields</td>
<td></td>
</tr>
<tr>
<td>Fundoscopy</td>
<td>Fundoscopy*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pupillary light reflex</td>
<td>Pupillary light reflex*</td>
<td>Pupillary light reflex*</td>
<td></td>
</tr>
<tr>
<td>Pursuit EOM*</td>
<td>Pursuit EOM*</td>
<td>Pursuit EOM*</td>
<td></td>
</tr>
<tr>
<td>Facial muscles*</td>
<td>Facial muscles*</td>
<td>Facial muscles*</td>
<td></td>
</tr>
<tr>
<td>Tongue</td>
<td>Tongue</td>
<td>Tongue</td>
<td></td>
</tr>
<tr>
<td>Gait*</td>
<td>Gait*</td>
<td>Gait*</td>
<td></td>
</tr>
<tr>
<td>Tandem gait</td>
<td>Tandem gait</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pronator drift*</td>
<td>Pronator drift*</td>
<td>Pronator drift*</td>
<td></td>
</tr>
<tr>
<td>RAM upper</td>
<td>RAM upper*</td>
<td>RAM upper*</td>
<td></td>
</tr>
<tr>
<td>Finger-nose*</td>
<td>Finger-nose*</td>
<td>Finger-nose</td>
<td></td>
</tr>
<tr>
<td>Tone arms*</td>
<td>Tone arms*</td>
<td>Tone arms*</td>
<td></td>
</tr>
<tr>
<td>Tone legs*</td>
<td>Tone legs*</td>
<td>Tone legs*</td>
<td></td>
</tr>
<tr>
<td>Power arms</td>
<td>Power arms*</td>
<td>Power arms*</td>
<td></td>
</tr>
<tr>
<td>Power legs</td>
<td>Power legs*</td>
<td>Power legs*</td>
<td></td>
</tr>
<tr>
<td>Biceps reflex*</td>
<td>Biceps reflex*</td>
<td>Biceps reflex*</td>
<td></td>
</tr>
<tr>
<td>Brachioradialis reflex*</td>
<td>Brachioradialis reflex*</td>
<td>Brachioradialis reflex*</td>
<td></td>
</tr>
<tr>
<td>Triceps reflex*</td>
<td>Triceps reflex*</td>
<td>Triceps reflex*</td>
<td></td>
</tr>
<tr>
<td>Patellar reflex*</td>
<td>Patellar reflex*</td>
<td>Patellar reflex*</td>
<td></td>
</tr>
<tr>
<td>Achilles reflex*</td>
<td>Achilles reflex*</td>
<td>Achilles reflex*</td>
<td></td>
</tr>
<tr>
<td>Plantar*</td>
<td>Plantar*</td>
<td>Plantar*</td>
<td></td>
</tr>
<tr>
<td>Light touch</td>
<td>Vibration</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>*Pinprick</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Romberg</td>
<td>Romberg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Goals for the practitioner

- To detect signs that, if otherwise missed, could adversely affect the patient’s condition
 - ER, office and ward setting
- Feel more comfortable with assessment
 - To get more from the consultation requested
- To develop an exam that is comprehensive, flexible, and efficient
What to look for

- Asymmetries
 - More than just physiological?
 - Co-localizing signs lend credence to findings
- ‘Systems affected’
 - Cortex
 - Corticospinal tract/ Somatosensory
 - Basal ganglia
 - Cerebellar
 - Peripheral nerve
General organization

- Mental status exam/dysphasia
- Cranial Nerves
- Motor Exam
- Sensory
- Reflexes
Mental Status

- Much information about language and cognition gained in initial conversation
- Dysphasia and dysarthria
- Folstein Mini-Mental and MoCA can both be done (www.moca.org)
- ‘Frontal lobe tests’ such as sequencing and no/no-go tests often forgotten
‘Upper’ Cranial nerves

- **CN 1**: often skipped, most commonly injured cranial nerves
 - Test with non-noxious substances (no perfume, contains alcohol)
- **CN 2**
 - Acuity, Visual Field, Pupils, Fundi
- **CN 3, 4, 6**
 - Conjugance, pursuits, saccades
Motor Function
- Masseter - most precisely examined
- Temporalis
- Medial/lateral Pterygoids
Cranial Nerve V - Sensory

- Sensory - Three divisions
 - Ophthalmic
 - Maxillary
 - Mandibular
- “Central Organization”
 - Most rostral part of nucleus is central
 - ‘onion peel’
‘Middle’ Cranial Nerves

- **CN 7**
 - Motor
 - Special sensory - taste - anterior 2/3 of tongue

- **CN 8**
 - Whispered voice
 - Weber, Rinne
‘Lower’ Cranial Nerves

- CN 9, 10
 - Voice quality
 - Gag reflex, palatal movement
 - Disregard uvula and watch the midline of soft palate
‘Lower’ Cranial Nerves

- **CN XI (The spinal accessory nerve)**
 - Sternocleidomastoid
 - Trapezius

- **CN XII (Hypoglossal)**
 - Unilateral lesions result in paresis, atrophy, furrowing
 - Deviation to side of paresis
Motor Exam

- Inspection-assymetries (atrophy) fasiculation
- Tone (spasticity/ rigidity/ paratonia)
- Power (MRC scale)
 - 0 no movement
 - 1 flicker of movement
 - 2 movement with gravity removed
 - 3 movement against gravity
 - 4 (4-, 4, 4+) movement against gravity
 - 5 normal power
Motor Continued

- Fine Motor Movements (Corticospinal)
 - Finger tapping, arm rotation
- ‘Cerebellar testing’
 - Rapid alternating movements
 - Finger-nose, heel-shin
 - Gait and station
‘Screening techniques’

- Used to screen for central nervous system abnormalities
- Used in patients who do not report focal weakness
- Question—are they as sensitive as a segmental exam?
A number to choose from....

- Pronator drift
- Barre
- Forearm roll/finger roll
- Mingazzini’s manoeuvre
- Fine motor movements
Sensory

- Principles
 - Relies on alert, cooperative patient
 - Brevity and simplicity
 - Abnormal to normal
 - Reproducibility
Use enough force to cause fingers to 'slide down' the pin
Other Techniques

- Vibration - offer maximal stimulus (hit it hard enough that the tuning fork makes a noise)
- Joint position - isolate the joint
- Temperature - understand that extremities are 4-6 degrees cooler than central body
Primary modalities
- Light touch, JPS, vibration
- Pin prick, temperature

Secondary
- Graphesthesia, stereognosis
- Primary modalities must be intact to make any assessment of secondary modalities
Deep tendon-grading

0: Absent
1: Hypoactive, present with reinforcement
2: Readily elicited with normal response
3: Brisk, without spread
4: Associated with clonus, tone change
Reflexes / Spinal Roots

<table>
<thead>
<tr>
<th>Muscle</th>
<th>Spinal Roots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jaw jerk</td>
<td>CN 5</td>
</tr>
<tr>
<td>Biceps</td>
<td>C5-6</td>
</tr>
<tr>
<td>Brachioradialis</td>
<td>C6</td>
</tr>
<tr>
<td>Triceps</td>
<td>C7</td>
</tr>
<tr>
<td>Patellar</td>
<td>L2-4</td>
</tr>
<tr>
<td>Hamstrings</td>
<td>L5, S1</td>
</tr>
<tr>
<td>Achilles</td>
<td>S1</td>
</tr>
</tbody>
</table>
Superficial reflexes

- Diminished with Upper or Lower Motor neuron lesions
- Superficial cutaneous
 - Abdominal (T8-T12)
 - Cremasteric (L2)
What do we base our exam on?

- Good evidence
- What we have been shown, history
- The rise of the exam
 - Early 1800s (Parkinson’s)
 - Charcot
 - World War 1
What do we base our exam on?

- Good evidence
- What we have been shown, history
- The rise of the exam
 - Early 1800s (Parkinson’s)
 - Charcot
 - World War 1
Detection of local cerebral hemisphere lesions using the neurological exam

- Anderson NE et al JNNP 2005;76:545-549
- 46 patients with a focal imaging abnormality and without obvious focal signs (presented with non-focal symptoms)
- Compared with 19 controls
Patient Characteristics

<table>
<thead>
<tr>
<th>Variable</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affected hemisphere</td>
<td></td>
</tr>
<tr>
<td>right</td>
<td>22(48)</td>
</tr>
<tr>
<td>left</td>
<td>24(52)</td>
</tr>
<tr>
<td>Location</td>
<td></td>
</tr>
<tr>
<td>Intra-axial</td>
<td>39(85)</td>
</tr>
<tr>
<td>Extra-axial</td>
<td>7(15)</td>
</tr>
<tr>
<td>Affected lobe</td>
<td></td>
</tr>
<tr>
<td>Frontal</td>
<td>20(43)</td>
</tr>
<tr>
<td>Temporal</td>
<td>13(28)</td>
</tr>
<tr>
<td>Parietal</td>
<td>16(35)</td>
</tr>
<tr>
<td>Occipital</td>
<td>8(17)</td>
</tr>
<tr>
<td>Diagnosis</td>
<td></td>
</tr>
<tr>
<td>Tumour</td>
<td>36(78)</td>
</tr>
<tr>
<td>Infarct</td>
<td>5(11)</td>
</tr>
<tr>
<td>AVM</td>
<td>3(7)</td>
</tr>
</tbody>
</table>
Upper limb-motor

<table>
<thead>
<tr>
<th>Test</th>
<th>sensitivity</th>
<th>specificity</th>
<th>PPV</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finger roll</td>
<td>0.33</td>
<td>1.00</td>
<td>1.00</td>
<td>0.38</td>
</tr>
<tr>
<td>UMN weakness</td>
<td>0.30</td>
<td>1.00</td>
<td>1.00</td>
<td>0.37</td>
</tr>
<tr>
<td>RAM</td>
<td>0.30</td>
<td>1.00</td>
<td>1.00</td>
<td>0.37</td>
</tr>
<tr>
<td>Forearm rolling</td>
<td>0.24</td>
<td>1.00</td>
<td>1.00</td>
<td>0.35</td>
</tr>
<tr>
<td>Pronator drift</td>
<td>0.22</td>
<td>1.00</td>
<td>1.00</td>
<td>0.35</td>
</tr>
<tr>
<td>arm swing</td>
<td>0.22</td>
<td>0.89</td>
<td>0.83</td>
<td>0.32</td>
</tr>
<tr>
<td>Fist opening</td>
<td>0.15</td>
<td>1.00</td>
<td>1.00</td>
<td>0.33</td>
</tr>
<tr>
<td>Finger tapping</td>
<td>0.15</td>
<td>1.00</td>
<td>1.00</td>
<td>0.33</td>
</tr>
<tr>
<td>Hyper-reflexia</td>
<td>0.11</td>
<td>0.95</td>
<td>0.83</td>
<td>0.31</td>
</tr>
<tr>
<td>Hoffmann’s</td>
<td>0.04</td>
<td>1.00</td>
<td>1.00</td>
<td>0.30</td>
</tr>
<tr>
<td>Spasiticity</td>
<td>0.04</td>
<td>1.00</td>
<td>1.00</td>
<td>0.30</td>
</tr>
<tr>
<td>Unilateral grasp</td>
<td>0.00</td>
<td>1.00</td>
<td>--</td>
<td>0.29</td>
</tr>
</tbody>
</table>
Lower limb signs

<table>
<thead>
<tr>
<th>Sign</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>PPV</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMN weakness</td>
<td>0.20</td>
<td>1.00</td>
<td>1.00</td>
<td>0.34</td>
</tr>
<tr>
<td>One foot balance</td>
<td>0.20</td>
<td>0.74</td>
<td>0.64</td>
<td>0.27</td>
</tr>
<tr>
<td>Babinski</td>
<td>0.13</td>
<td>1.00</td>
<td>1.00</td>
<td>0.32</td>
</tr>
<tr>
<td>Foot tapping</td>
<td>0.11</td>
<td>0.89</td>
<td>0.71</td>
<td>0.29</td>
</tr>
<tr>
<td>Spasticity</td>
<td>0.09</td>
<td>0.89</td>
<td>0.67</td>
<td>0.29</td>
</tr>
</tbody>
</table>
Sensory Exam

<table>
<thead>
<tr>
<th>Test</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two point</td>
<td>0.20</td>
<td>0.95</td>
</tr>
<tr>
<td>Graphesthesia</td>
<td>0.13</td>
<td>1.00</td>
</tr>
<tr>
<td>Extinction</td>
<td>0.11</td>
<td>1.00</td>
</tr>
<tr>
<td>Finger-nose</td>
<td>0.09</td>
<td>0.95</td>
</tr>
<tr>
<td>Pinprick</td>
<td>0.04</td>
<td>1.00</td>
</tr>
<tr>
<td>Light touch</td>
<td>0.02</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Cranial Nerves

<table>
<thead>
<tr>
<th>Test</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual field</td>
<td>0.22</td>
<td>0.95</td>
</tr>
<tr>
<td>Facial weakness</td>
<td>0.17</td>
<td>0.95</td>
</tr>
<tr>
<td>OKN</td>
<td>0.13</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Tests of Motor Function in Patients suspected of having mild unilateral cerebral lesions

 - Various test of 170 patients, with (86) and without (84) cerebral pathology
Tests of motor function

- Pronator drift
- Barre
- Arm roll/finger roll
- Reflexes
- Mingazzini’s manoeuvre
- Fine motor movements
Higher sensitivities

<table>
<thead>
<tr>
<th>Test</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forearm roll</td>
<td>0.45</td>
<td>0.97</td>
</tr>
<tr>
<td>Segmental motor exam</td>
<td>0.38</td>
<td>0.97</td>
</tr>
<tr>
<td>Pronator drift</td>
<td>0.92*</td>
<td>0.90</td>
</tr>
<tr>
<td>Mingazzini</td>
<td>0.55</td>
<td>0.90</td>
</tr>
<tr>
<td>Barre</td>
<td>0.86</td>
<td>0.91</td>
</tr>
<tr>
<td>Fine finger movements</td>
<td>0.73</td>
<td>0.87</td>
</tr>
<tr>
<td>reflexes</td>
<td>0.68</td>
<td>0.86</td>
</tr>
</tbody>
</table>
Most Common Consults

- Diplopia
- Headaches
- Tremor
Diplopia-Screening exam

- Brainstem, Cranial nerve or neuromuscular junction
- Where is there dysconjugance?
 - At rest, with vergence, with saccades
- Watching extent of eye movements - determining what type of diplopia exists
 - Horizontal - VI nerve palsy
 - Diagonal - IIIrd nerve, IV nerve
 - Variable - neuromuscular junction
Diplopia

- False image (ie. from the paretic eye) is always the most peripheral
- Watch for head tilt (indicating 4th nerve palsy)
- Watch for associated signs (ptosis of 3rd nerve or Horner’s syndrome)
What cranial nerves are affected?
 - CN exam (especially CN 3-7)
Does it localize to brainstem?
 - Corticospinal tract signs, sensory signs
Evidence of neuromuscular dysfunction
 - fatiguability
Question: Is there evidence of radicular dysfunction?

- Motor power, reflexes and sensory exam
- General exam
 - Straight leg raising: L₄-S₁ roots
 - reverse straight leg raising: L₂-L₃ roots
 - contralateral straight leg raising: central disc
Radiculopathy

- Root screen-arm
 - Deltoids-C5
 - Biceps-C5
 - Triceps-C7
 - FE- C7
 - FDI-C8 (ulnar nerve)
 - ADM- C8 (ulnar nerve)
 - APB – C8 (median nerve)
Screening exam

- Iliopsoas - L₁, L₂
- Quadriceps - L₂-₄ (femoral nerve)
- Adductors - L₂-₄ (obturator nerve)
- Hamstrings - L₅-S₁
- Tib. Anterior - L₄-L₅
- EHL - L₅
- Gastroc - S₁
Headache-Screening exam

- Is there raised intracranial pressure?
- Is their focality?
 - Cranial neuropathy
 - Evidence of corticospinal tract lesion/cerebellar dysfunction
- Is there evidence of arteritis?
- Is there evidence of coexisting arthritis?
Tremor-screening exam

- Descriptive
 - Distribution (hands, head, voice)
 - Frequency
 - Amplitude
 - Provocation
- Focused exam
 - Observation for bradykinesia-blink rate
 - Tone change
 - Gait-posture, arm swing pivot
Key references

- Detection of focal cerebral hemispheric lesions using the neurological examination
 - Anderson et al. J NNP 2005 76:545-549

- Tests of Motor Function in Patients Suspected of Having Mild Unilateral Cerebral Lesions
 - Teitelbaum et al CJNS 2002; 29:337-344