Hip Clicks, In-Toeing, Bow Legs, Knock Knees, Flat Feet

Who should be referred?

Presented by: Dr. Thierry Benaroch

Objectives

❖ Understand the difference between hip clicks, hip instability and indications for hip ultrasound.

Congenital Dislocation of the Hip (CDH)

- ❖ Now referred to DDH
- Implies hip is dislocated at birth
- * Neonatal screening should; therefore, pick up all cases

History

❖ The 4 "**F**'s"

History

- First born
- ❖ Female (13:1)
- Frank breech (hips flexed, knees extended)
- Family history

- Baby must be relaxed
- If crying, examine hip later
- Gentle exam

Barlow – dislocate reduced hip

Dislocatable Hip: Natural History

- ***** 1:60
- ❖ 60% will stabilize by 1 week
- ❖ 88% will stabilize by 2 months; therefore, 12% will end up dislocated

- Ortolani +ve reduce a dislocated hip
- ❖ Ortolani -ve not able to reduce a dislocated hip

Canada

Dislocated Hip

- Dislocated in resting position
- ❖ May reduce with Ortolani manoeuvre; this will be lost
- ❖ Will not resolve without treatment (90 95%)

Bottom Line

Barlow or Ortolani positive hip

 \downarrow

Unstable hip

Refer to Pediatric Orthopedic Surgeon

Ultrasound (U/S)

- Femoral head cartilaginous (radiolucent) at birth
- Ossification starts
 - ❖3 to 4 months for females
 - ❖5 to 6 months for males
- Delayed ossification in DDH

Ultrasound (U/S)

- ❖ Fills "imaging gap" for hip dysplasia (0 6 months)
- Able to visualize soft tissue and unossified cartilaginous structures of the immature hip

Alpha Angle

- ❖ > 60 degrees is normal
- ❖ < 50 degrees is pathological
 </p>
- ❖ 50 60 degrees represents a physiologically immature acetabulum only in infants < 3 months</p>

Percentage Coverage

- ❖ > 50% is normal
- ❖ < 40% is pathological
- ❖ 40 50% may be a normal finding up to 3 months of age

U/S Advantages

- Non-invasive and painless
- No ionizing radiation
- Visualization of cartilaginous components
- Monitors treatments with Pavlik harness

U/S Disadvantages

- Operator dependent
- Too sensitive
 - (i) detects laxity which is not apparent on clinical exam
 - (ii) identifies acetabula that are more physiologically immature (potentially dysplastic)
 - (i) & (ii) lead to overtreatment

Canada

Click:

- Benign
- Not a "clunk"
- No significance

- ♣ Barlow, Ortolani → up to 4 6 weeks of age

❖ If dislocated hip not picked up by 4 – 6 weeks of age then generally lose Barlow, Ortolani manoeuvre.

❖ Late physical signs of dislocated hip appear, but <u>only</u> by 4 – 5 months of age.

Physical Exam: Late Signs

Decreased hip abduction

Physical Exam: Late Signs

- Apparent short leg
 - Galeazzi sign
 - Asymmetrical thigh folds

Pearl

Asymmetrical thigh fold with symmetrical abduction highly unlikely to be DDH.

Bottom Line

Detect unstable hip (Barlow, Ortolani)

Refer to pediatric orthopedic surgeon

Bottom Line

Bottom Line Screening Hip U/S

If 40-50% coverage/alpha angle 50-60°

Repeat Hip U/S in 6-8 weeks

If no improvement

If improvement,

Bottom Line

If Alpha angle >60° and coverage 50%

AP Pelvis X-ray at 1 yr

Bottom Line

If Alpha angle <50° and coverage <40%

Refer to Pediatric Orthopaedic Surgeon

Ultrasound Screening at the Shriners Hospital

If ultrasound is normal, all get an AP-Pelvis at 1 year of age

Intoeing Objectives

- **❖** Anatomical
- Chonological
- * Refer?

Intoeing

I. Hip/Femur - Femoral Anteversion

II. Tibia – Internal Tibial Torsion

III. Foot - Metatarsus Adductus

or combination

Femoral Anteversion

- † Hip internal rotation
- ↓ Hip external rotation
- Female
- Age: $\sim 3 10$

Femoral Anteversion

- Most cases of femoral anteversion will remodel by age 10 unless mom and dad still have it
- Cosmetic concern only
- No functional implications in later life!!!
- Therefore, NO treatment

Internal Tibial Torsion

Most common cause of intoeing < 3 yrs of age

Internal Tibial Torsion

- Usually symmetric
- Most cases will remodel by age 4
- May be associated with femoral anteversion
- Cosmetic concern
- No functional implications

Miserable Malalignment Syndrome

Femoral anteversion with compensatory tibial torsion

Metatarsus Adductus

- 0 18 months
- Forefoot pointing in
- Intrauterine fetal position
- ❖ Most respond to time, stretching, or casting
- Must differentiate from clubfoot (where hind foot is malpositioned and foot very stiff)

Metatarsus Adductus

Refer:

- **❖**Not flexible
- Very curved lateral border
- Deep medial crease
- **♦**< 8 months of age

Intoeing Summary

Refer:

- Very asymmetrical
- * Abnormal physical examination
 - -↑ Tone
 - -Clonus
 - -Hyperreflexia
 - ❖ Foot Deep medial crease and rigid

Angular Deformities in Children

Bowlegs = Genu Varum

Knock knees = Genu Valgum

- Usually physiological, needs no treatment
- But... do not miss pathological causes
- How to differentiate physiological from pathological angulation in children?

Approach to a Child with Angular Deformity

- Family history
- History of present condition
 - Progression
- **Physical examination:**
 - General (features of skeletal dysplasia)

Clinical Evaluation

- No evidence of pathological bone disorder
- ❖ Age of the child
 - Genu Varum = 1 3 years
 - Genu Valgum = 3 7 years

Therefore, it is physiological – you do not need to refer the patient

- Follow-up appointment
- Clinical photographs

4½ years old

Deformities falling
 outside the age for
 physiological genu
 varum and valgum

Unilateral

• Asymetrical

Canada

Severe

Canada

• Progressive

18 months

4 years old

• Any suspicion of pathological disorder

Canada

- Deformities falling outside the age for physiological genu varum and valgum
- Unilateral
- Asymetrical
- Severe
- Progressive
- Any suspicion of pathological disorder

Flatfeet

Canada

Flatfeet

Most always asymptomatic

- No correlation to back pain
- Major source of concern to parents

Copyright 1989 by The Journal of Bone and Joint Surgery, Incorporated

Corrective Shoes and Inserts as Treatment for Flexible Flatfoot in Infants and Children*

BY DENNIS R. WENGER, M.D.[†], SAN DIEGO, DONALD MAULDIN, M.D.[‡], GAIL SPECK, M.D.[‡], DEAN MORGAN, C.PED.[‡], DALLAS, TEXAS, AND RICHARD L. LIEBER, PH.D.[†], SAN DIEGO, CALIFORNIA

From the Texas Scottish Rite Hospital, Dallas, and the Division of Orthopedics, University of California at San Diego, San Diego

Flatfeet

• Rigid vs flexible

- Painful
- Reforms arch with NWB
- ST joint mobility

Different Dx of Painful Rigid Flatfeet

- Tarsal coalition unilateral or bilateral
 - -8 14 years of age
 - -Mechanical/no history of trauma
- JRA bilateral
- Infection unilateral
- Trauma unilateral

Refer:

• Painful → flexible or rigid

Do not refer:

- Not painful, even if rigid
- Arch supports

Thank You?

Time

Toe Walking

History

- > 3 years of age
- Perinatal history/develpment
- Family history
- Timing
- % of time on toes

Physical Exam

- Calf hypertrophy
- Gower sign
- Clonus, hyperreflexia
- Spine
- Squat test

• Ankle DF to be assessed with knee in EXT.

 $DF = -20^{\circ}$

 $DF=0^{\circ}$

• DDx:

- Cerebral palsy
- Muscular dystrophies
- Tethered cord syndrome
- Diastematomyelia
- Other neuromuscular diseases
- **❖**Autism

TREATMENT:

Any ANOMALY on exam

❖ If left untreated, will persist or worsen

❖ Modalities:

- Physio: Stretching
- Night braces
- Serial casts
- Surgery

Thank you!

Web site

shrinershospitalsforchildren.org/Canada

Facebook

facebook.com/ShrinersHospitalsforChildrenCanada

Twitter

Twitter.com/ShrinersCanada

